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Abstract

It is well established that the aviation industry relies on
a robust air traffic control (ATC) network to maintain safe,
redundant, and effective operations both on the ground and
in the air. However, one of the greatest barriers to safety
at major airports is extreme, low-visibility weather condi-
tions. Thus, it is imperative to begin implementing and inte-
grating systems to increase aviation safety when operating
in suboptimal conditions. To do so, this paper introduces a
relatively simple, yet effective computer vision approach to
implement a real-time virtual display that will help aircraft
controllers identify aircraft from the control tower, in addi-
tion to their radar screens. By using radar data provided
by Flight Radar 24 [4], I manually extracted top-down co-
ordinates with respect to a bounded region. Subsequently,
I manually defined correspondences from a static alternate
perspective of the aircraft, and computed an optimal per-
spective homography H*, allowing the system to effectively
track an aircraft in a toy example. Finally, I conducted
the same methodology on dynamic footage in low visibil-
ity scenes, computing a homography matrix for each frame
Hy, ..., H, and transforming each radar coordinate. Since
the system is built on ground truth radar data, I achieved
100% tracking accuracy for both static and dynamic cam-
eras on real-world footage. Compared to openCV'’s mean
point algorithm for object tracking and CNN-based motion
detection, my system worked incredibly well while the other
systems did not work when introduced to Gaussian noise
and occlusions.

1. Introduction

Currently, air traffic controllers in control towers are
trained to implement low visibility procedures (LVP), in
the event of CAT II/III conditions. That is, approaches,
landings, and take-offs with a visibility range below 550
m. They often rely on reduced visual cues in tandem with
radar screens to determine aircraft positioning at the airport
and to coordinate multiple aircraft at once. Furthermore,
ground controllers overseeing parking and takeoffs have to

rely on visual aid to coordinate multiple aircraft taxiing on
the ground simultaneously. However, as seen with the dis-
aster at Tenerife, this becomes extremely difficult in low
visibility conditions. Relying without any real-time visual
aid increases the risk of a ground collision, or worse, an
approach collision due to planes crossing a runway on ac-
cident at airports such as San Francisco (KSFO). Thus, it is
imperative to implement systems to increase aviation safety
when operating in sub-optimal conditions. Currently, the
FAA has not implemented or mandated any form of visual
assistive technology in ATC operations. Most of the time,
controllers rely on their vision and looking down occasion-
ally at their radar screen to direct landings and takeoff clear-
ances.

2. Related Work
2.1. Augmented Reality in ATC Operations

The concept of using computer graphics to augment
visual reality for ATC towers was initially proposed by
Lloyd Hitchcock at the FAA Technical Center in the
1980s. [3] By 1970 and 1980, there were many successful
demonstrations of heads-up displays (HUD) in aircraft
cockpits to aid pilots, but not ATC operators. The idea for
this system has been discussed before. In 2006, a group of
NASA researchers presented the idea of software designed
to aid controllers in their day-to-day operations. However,
they explicitly stated “This paper does not present a
finished design for a tool ready for implementation” [3].
Researchers from SESAR’s RETINA Project attempted to
tackle this problem in 2018 using simulations. However,
they also stated “... since this technology is not yet mature
enough for full deployment in a safety critical environment,
further research is required to demonstrate it in a real en-
vironment.” [2]. Further, SESAR’s Netherlands Aerospace
Center started their efforts to expand on RETINA starting
in 2021. However, their research has not been completed as
of 2024, nor implemented yet on real footage but rather on
simulation.

Another relevant discussion of this problem is Brian
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Hilburn’s research [6], where he discusses notions of
head down time (HDT) of controllers, and solutions to
reduce this such as the NOMAD augmentation system
to implement the system discussed in this proposal (A
thorough review of this research paper is recommended
to understand the issue being discussed). However, while
Hilburn suggests such a system, there is no mention of what
the software would look like in reality. It is clear that this
idea has been thought about, but little research has been
conducted to begin the implementation of such a system on
real world footage.

2.2. Augmented Reality

A key component of this research also relies on aug-
mented reality. That is, the integration of software into
a real-world, 3D environment. Object tracking has been
a task defined by the industry for many years. In 2014
(known as the deep learning era for object detection),
Girshick et al. proposed the Region-based Convolutional
Neural Network (RCNN), which passed proposed regions
into a CNN, extracting features and effectively identifying
objects in a camera frame [5]. Many rely on deep neural
networks to detect objects in the real world. However,
this relies on having direct visual contact with the object.
Thus, one can envision a system that leverages the accuracy
of deep neural networks to identify aircraft in optimal
conditions but then uses radar data to continue identifying
aircraft even when you can’t see the tarmac.

This project serves as an initial implementation of an
object tracking system that can handle occlusions and
track when aircraft cannot be seen. The intent is for future
researchers to build on the approaches laid out in this initial
implementation, and come up with a way to integrate hard-
ware (such as HUD glass or spatial computing headsets) to
implement this into ATC operations.

3. My Approach
3.1. Overview

To begin implementing a system that provides visual aid
to ATC operators, we must simplify the problem as much
as possible, and then gradually increase the complexity of
the system. While many would propose the use of complex
object tracking algorithms making use of neural networks,
or highly advanced 3D reconstruction techniques, these
approaches all rely on visual contact with the object for
tracking.

Additionally, since controllers have real-time access to
radar positioning data, it is evident that this data can be

Figure 1. Side by Side, preprocessed video clips consisting of
391 frames. Timing corrections were implemented based on visual
cues and GPS coordinate data.

leveraged to track aircraft on the tarmac. At a high level,
I first implemented the system using a toy example of 391
frames, where a Boeing 737-9 was conducting takeoff role,
remaining on the ground for the full video duration. After
implementing this system, the next step was to expand the
approach to a dynamic camera, simulating head movement
for further implementations using vision goggles that
controllers can wear.

3.2. A Static Toy Example with 391 frames at Seattle
- Tacoma International Airport (KSEA)

As mentioned previously, I first considered a toy sce-
nario with a single runway (Runway 34R/16L at KSEA),
and a single aircraft (Boeing 737-9, ASA653). 1 first
defined a coordinate plane, which was simply the pixel
coordinates of the real world video. I then defined a
bounded region within this coordinate system to focus on
for tracking. Importantly, because of how I defined the
coordinate system, I had to ensure that I preprocessed both
the radar footage and the real-world footage to match frame
rate, frame number, correct timing, and same dimensions.
(see Fig. 1).

By using an open source, live video feed of Seattle-
Tacoma International Airport, in tandem with real-time
flight data by Flight Radar 24, I was able to pre-process
both screens efffectively. (see Fig. 2).

Collecting 3D Coordinates with Respect to a Bounded
Region

Each video consisted of 391 frames, and the first task
was to obtain the coordinates of the aircraft in the flight
radar video for each frame. Though this process could
have been done manually, I used OpenCV’s cv2 library to
object track and record the 3D coordinates (x,y, h) of the
aircraft on the radar. After minor adjustments of the output
from the object tracking algorithm, I was able to obtain
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Figure 2. This figure shows two key aspects. First, the region I
chose to bound for tracking the aircraft. In other words, future
implementations would be able to track all aircraft that enter this
region. Second, this figure shows a blue dot in the center of the tar-
get aircraft. This was a result from the object tracking coordinates
from OpenCV'’s cv2 Python library, and it followed the aircraft
with 100 % accuracy for all 391 frames after minimal offset ap-
plied

accurate coordinate data in real-time, serving as ground
truth. It is important to note that since the aircraft remained
at flight level 000 for the duration of the video, the altitude
component i = 0 for all 391 frames. Thus, I was able to
discard h from the coordinates during the computation and
transformation in the toy example.

Figure 2 demonstrates the accuracy of the coordinates.
A blue dot that following the path of the coordinates
perfectly matches the motion of the orange target aircraft
during the takeoff procedure.

Transforming Ground Truth Radar Data into Real
World Footage

Subsequently, the task was to take the sequence of 391
2D coordinates and calculate a perspective transformation
that mapped to the tower’s view of the same aircraft per-
forming a takeoff role. This was relatively straightforward.

Consider Figure 3, which depicts a subset of the corre-
spondences chosen. Given at least four correspondences,
I was able to calculate a 3x3 homography matrix H using
OpenCV that transformed the set of coordinates to track
the aircraft from a different angle. This required immense
experimentation and different correspondence choices,
solving many different systems of equations to compute
the optimal H. To streamline this process, I wrote software
that allowed me to manually click correspondences based

Figure 3. Approximation of four correspondences used to calcu-
late a perspective transformation in order to effectively track an
aircraft on takeoff roll.

Figure 4. The two examples I chose from the plane spotting video.
Notice how they are low visibility conditions. Further, the videos
have minimal movement and maintain the aircraft in a center po-
sition for simpler computation purposes

on visual markers at the airport, terminal buildings, the
aircraft itself, and other features relating to the video. The
choices for computation had immense effects on the video
output, and thus significant experimentation was required.

3.3. Testing the Approach on Dynamic, Low-
Visibility, Real World Footage at San Fran-
cisco International Airport (KSFO)

Once an optimal homography H* was computed on
an example where the camera remains static between
frames, the next step was to compute multiple optimal
homographies H7, ..., H,; for examples with n frames, and
transform each respective radar coordinate to effectively
track aircraft in low visibility conditions. I chose two
examples taken from HD Melbourne Aviation’s plane
spotting video at KSFO (see Fig. 4) [1]:

1. Night Landing of a Boeing 777-3 Turkish Airlines
(TK80), n = 584 frames

2. Foggy Landing of a Boeing 757-2 Delta Airlines
(DL1384), n = 534 frames
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Obtaining the Radar Data

To obtain the radar data for both flights and to have
the ability to time sync the footage to the real-world video,
I once again used FlightRadar24’s historical data feature,
which allows users to obtain radar data for specific aircraft
at any time for the past 2 years.

Video Pre-processing

Once again, I had to preprocess both pairs of videos
to ensure that the frame rate, timing, number of frames,
and size was consistent to ensure the functionality of
the implementation. This was done using video editing
software Final Cut Pro X.

Differences in this Approach Compared to the Toy
Example

For the most part, most of the implementation re-
mained the same, except with increased complexity. For
example, the altitude component / became did not remain
the same, since the aircraft examples I chose consisted of
both a landing and takeoff in low visibility. Thus, I used
the altitude data provided by FlightRadar24 to add this 3D
component to the 2D coordinates I originally computed
with object tracking. No offset was required to track the 2D
radar positioning footage, as the OpenCV object detection
algorithm worked optimally. Further, my implementation
now required manually defining correspondences for every
frame in each example, which required immense manual
effort. I was able to compute a list of 584 homographies
for the first example, and a list of 534 homographies for the
second example. Once this was done, the process became
relatively straightforward. I applied each transformation
matrix to each respect coordinate at each frame of the
video, providing a different basis of transformation for
each coordinate. This allowed the implementation to track
the aircraft effectively leveraging the radar data.

4. Results and Evaluation
4.1. Performance on the Toy Example

Overall, the implementation worked very well on the toy
example. Due to the calculated transformations, I was able
to achieve 100% accuracy since I transformed the ground
truth data directly for both the toy and dynamic examples.
Figure 5 demonstrates the results for my implementation
compared to OpenCV in varying conditions, including
both nominal and blurred. To simulate low visibility
conditions, I introduced Gaussian noise, and tested both
systems. The motion tracker clearly failed, whereas my
initial implementation worked flawlessly since it was based

OpenCV cv2
motion detection

Gaussian Blur to
simulate low visibility

Projective
Transformation
with Radar Data

Figure 5. Comparison of the motion tracking solution, compared
to my initial implementation. Clearly, motion tracking falls short
and fails to track effectively

Figure 6. Shots of the final output performing on the two real-
world dynamic examples. As shown, the implementation correctly
tracks both aircraft, and performs better than Open CV’ s mean
point approach depicted in blue

on real-time data (see Fig. 5 for results). As shown in
the matrix, the toy example far exceeds the performance
of the mean point algorithm, due to the presence of the
building occlusion and the Gaussian blur (please refer to
the Appendix for an expanded view of the Figure 5 and
Figure 6).

4.2. Performance on the Real World, Dynamic Ex-
amples

The implementation worked very well on the real-world
dynamic examples compared to Open CV’s mean point
algorithm for object detection (see Fig. 6). Once again,
I achieved a 100% accuracy due to the transformation on
ground truth data. OpenCV’s object tracking worked
fairly well, but this was due to the fact that the aircraft re-
mained centered in the frame, as the dynamic camera was
following the position of the aircraft. When comparing the
two approaches, it is clear that my implementation does
much better, and it’s more accurate with respect to the po-
sitioning of the aircraft in both low visibility conditions.
Specifically, it is much more centered over the course of
the frames in the video, and tracks much better overall. (see
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Fig. 6). These results show that radar data can be used
to visually track aircraft without relying on complex object
tracking techniques.

5. Discussion and Limitations

Though at a high level, this approach was relatively
simple, it took an immense amount of manual effort and
validation, with constant experimental manipulation to
ensure the system worked as intended. The specifics of the
implementation required significant attention to detail, and
if the homographies computed contained the slightest error,
there would be significant affects to the results.

However, the results yield a significant milestone of
a novel approach to thinking about aircraft tracking.
Currently, there is a wide breadth of startups devoted to
the problem of object tracking with respect to airports and
airport operations. One example is Traverse 3D, where
my colleague Huy Nguyen et al. at Stanford are working
on detecting aircraft debris and vehicles on runways using
computer vision techniques.

I hope to contribute an approach that is simple, intuitive,
and one that leverages accurate radar data in order to
increase redudancy and provide a safer operational envi-
ronment for the industry.

This research certainly has limitations. For one, I only
used 3 total examples of pre-recorded footage, which is
significantly different than real-time visual input from a
camera mounted on glass or a human head. Additionally,
my implementation solely focuses on a single aircraft at a
time. In the future, I hope that researchers will be able to
expand the software to multiple aircraft moving at once,
displaying information for each one simultaneously to the
operator.

Additionally, there was a slight delay between the
movement of the aircraft in the real world and the digital
depiction in FlightRadar24. This is due to the latency time
it takes for the radar data to update to the cloud and web.
In real-world applications, this would not be an issue since
the system could theoretically depend on actual radar data
over a third part source.

6. Conclusion

Through my research, I have learned an incredible
amount of knowledge relating to the problem of real-time
object tracking. There are many different approaches
to the problem, and some are much more complex than
others. Many propose that the use of 3D reconstruction

and RCNNs to object track are the optimal way to do so.
As proposed earlier, this system could most certainly be
improved if integrated with my implementation in cases
where an aircraft cannot be seen. One can envision a
system where more complex object-tracking approaches
are used in most nominal conditions but then rely on the
radar data when reaching CAT II/III conditions.

Further, as companies such as Apple are developing
spatial computing headsets, future researchers can leverage
this new ecosystem to increase the quality of the UX/UI
design of the software, leveraging FlightRadar24’s API to
display additional aircraft information.

7. Supplementary Material
1. Github Repository

2. Link to the final output video presentation
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